Science can take you to unexpected places: Meet Millie Watts

Millie Watts completed a geosciences degree with the Open University whilst qualifying as a teacher, followed by a MSc in Environmental Dynamics and Climate Change at Swansea University. She has been doing her PhD since 2013 at the National Oceanography Center, focusing on dating prehistoric underwater landslides from the Norwegian continental shelf, specifically the Storegga Region. She will be giving a talk at Soapbox Science Brighton on Saturday 29th July called: Will climate change cause more tsunamis in the UK?” 



SS: What is the most fascinating aspect of your research/work?

MW: My research has focussed on accurately dating a series of massive underwater landslides from the Norwegian continental shelf. The reason this is interesting, is that these landslides are capable of generating tsunamis that can reach the UK. We know that the most recent of these slides, the Storegga Landslide, which occurred 8200 years ago created a wave that was over 25 m high in the Shetland Islands, and still 5 m high around Scotland. Not only is this a fascinating field to work in, but it also involves a wide range of field and lab work that has revealed some fascinating new information about these slides. The sediment cores I work on, were collected during a month-long expedition to the Nordic Seas, and document a history of these landslides over the last 125,000 years. Through understanding the timing of these slides, and the conditions within the ocean at the time they were triggered, we can estimate the future risk to the UK population.


SS: What, or who, inspired you to get a career in science? 

MW: My mum: she taught me that I could do anything I wanted and always encouraged me to pursue my interests. She taught me to work hard at school, and how to handle difficult subjects, and study effectively. I am forever grateful that she made learning fun when I was young, and that I have been able to pursue a PhD because of her continued support.


SS: How did you get to your current position?

MW: My route to a PhD was far from traditional. I did very well at school, and started a degree at university when I was 18, but had to drop out before finishing. I found a teaching role at a local college, and finished the last two years of my degree at home through the Open University, I studied hard, and finished two years of study in under 18 months, at the same time as completing a part time teaching degree with Plymouth University, and teaching A-Level geography and Geology full time. It was a very challenging two years, but I had huge support from my mum, and my employer, and I really wanted to finish my first degree and go on to get a PhD. Whilst I was teaching, we had visitors from a number of universities come in to speak to the students who were applying through UCAS, and one of them was Dr. Geraint Owen from Swansea, we were chatting and he encouraged me to apply for an EU funded Masters at Swansea. I was fortunate enough to be offered the Masters and the funding, and once I returned to studying, I was even more convinced that a PhD was the right path for me. I started looking early, and one came up working on the Arctic Landslide Tsunami Project. Natural disasters have always been a particular area of interest for me, and this PhD was focussed on Quaternary dating methods applied to the risk of tsunamis affecting the UK. It is a fascinating topic, and one with a significant real world application, and that is what has kept me interested throughout the course.


SS: Research in STEMM is becoming increasingly multi-disciplinary. Which STEMM (science, tech, engineering, maths, medicine) subjects do you use in your work? In particular, how does maths play a role in your research?

MW: My PhD has been very multidisciplinary, the wider project is led by my supervisor, Professor Peter Talling, a sedimentologist, but crosses the fields of civil engineering, risk management, marine geology, palaeoclimatology, ocean modelling and geophysics. My background is geology and Quaternary science, but through my research group I have learnt a lot about modelling, fluid dynamics and statistics. Maths, in particular statistics has been a key component of my work, I use statistics to show that my conclusions are robust and significant. My personal research makes use of a variety of methods for dating sediments, radiocarbon, tephrochronology and biostratigraphy, and each of those dating methods has a different estimate of uncertainty. The use of Bayesian statistics takes my collection of data points, and combines them to form a meaningful conclusion. In this case, being able to accurately date natural disasters that happened thousands of years ago, and use that date to understand what may have caused them.


SS: What attracted you to Soapbox Science in the first place – and why Brighton? 

MW: I enjoy outreach, I think it is an essential component of research, and more PhD students should engage with events like this. Being able to justify your research and give interesting presentations to your peers is an essential skill. But it is not the same as being able to enthuse younger students, or the general public about your work. Both types of communication are important, and both take practice. I have been fortunate to have been generously sponsored by the school of Ocean and Earth Science, and given some time to develop a new activity, that should be a lot of fun – just hoping it doesn’t rain!


SS: Sum up in one word your expectations for the day – Excitement? Fear? Thrill? Anticipation?

MW: Thrill.


SS: If you could change one thing about the scientific culture right now, what would it be? 

MW: More post-doc opportunities with longer term contracts. Short term roles are the norm for the first few post doc positions, and it can be hard to manage relocating every year or two.


SS: What would be your top recommendation to a female PhD student considering pursuing a career in academia?

MW: Find something you love, and will continue to excite and interest you. Build a suitable network amongst colleagues and supervisors, and use the resources and opportunities available to you at the university. Whether it is additional training, demonstrating for undergraduate modules, accompanying fieldtrips or organising conferences. Experiences are valuable, and will help you develop a broad skills base during your PhD.


SS: What words of encouragement would you give to children who might be interested in a career in science?

MW: Science is fun, it is surprising, it takes you all over the world to unexpected places. Science isn’t just maths, physics and chemistry, science is also icebergs, fossils, mud, volcanoes, and helping people understand the planet we live on, and how to adjust to a changing environment.

Posted in 2017 speakers blog | Leave a comment

Make your ideas stronger by talking about them: Meet Bridget Penman

Dr Bridget Penman is an assistant professor at the University of Warwick. She has a DPhil from the University of Oxford Department of Zoology and a BA in Biological Sciences from the University of Oxford, and was previously a Sir Henry Wellcome Postdoctoral Fellow at the University of Oxford. She studies the co-evolution of humans with parasites, viruses and bacteria in order to help us understand infection and combat disease. She is taking part in Soapbox Science Milton Keynes on Saturday 29th July 2017.


SS: What is the most fascinating aspect of your research/work?

BP: Why does one person get sick from a virus, whilst another doesn’t notice they’re infected?  The answer may well be in their DNA.

I try to understand these differences in susceptibility to disease, and how we can use this information to better fight infections in the future. To do this, I study how human genes have evolved in response to infectious diseases. I get to think about the most fundamental process in biology: evolution by natural selection.  I also think a lot about human health, which it’s hard not to find fascinating!

My day to day research involves using computers to simulate human populations living with infections. If you’ve ever enjoyed playing a simulation-based computer game (e.g. SimCity), you’ll know how quickly you can become absorbed in a simulated system, making changes that you think will have one effect, and being surprised when something else happens.  My research is full of similar moments.  I test whether the biological processes I have simulated give rise to the patterns I expect, or something even more exciting.


SS: How did you get to your current position, and what inspired you to pursue a career in science?

BP: When I was studying biology at university, I met Professor Sunetra Gupta, who uses mathematical models to understand infectious diseases.  Sunetra is a hugely inspiring scientist, who gave me the chance to do a PhD in a diverse team of biologists, mathematicians and computer scientists.  I am now working at the University of Warwick, in a similarly interdisciplinary environment at the Zeeman Institute

For me, being able to apply mathematical techniques to biological questions was just as important as my interest in human disease in leading me to where I am today.  However important the scientific question, it helps if you enjoy the techniques you are applying as well, and can take pleasure in developing and excelling at those skills.


SS: What attracted you to Soapbox Science in the first place? 

BP: Challenging stereotypical ideas about who scientists are and what they do is a great idea, and I think it’s wonderful that the event has become such a success over the past few years.  Even though the thought of getting on the soapbox is daunting, I also want to see what sorts of questions people ask on the day, which I hope will help me understand how best to communicate my own scientific ideas to the widest possible audience.


SS: Sum up in one word your expectations for the day

BP: Adrenaline!


SS: What would be your top recommendation to a woman studying for a PhD and considering pursuing a career in academia or research?

BP: Take up every opportunity you can to present your research to others: volunteer to give a lab meeting talk; apply for an oral presentation rather than a poster presentation at a conference.  I had to be encouraged to do those things myself, but I’m so glad that I received that extra push.  Every time you have to talk about your ideas, you have to refine them – so your ideas get stronger, and each time you present your work, you build up the confidence you will need to successfully apply for grants and jobs.


Posted in 2017 speakers blog | Leave a comment

Be passionate, work hard and persevere: Meet Pallavi Anand

Dr Pallavi Anand is a Lecturer in Oceanography at the Open University, Milton Keynes. She is an ocean geochemist, who enjoys looking at plankton shells and thinking about new ways to use locked chemicals in shells and sediments to unravel past climate. She is also interested in investigating the impact of increase ocean acidity on plankton’s ability to make shells in the present environment. Here she talks about her inspiration and passion for science. She is taking part in Soapbox Science Milton Keynes on Saturday 29th July 2017.


SS: Pallavi, how did you get to your current position?

PA: I finished my university education and was lucky to get a PhD fellowship in Indian Institute of Technology, Mumbai, India. There, I was fortunate to receive a Nehru Fellowship for doing a PhD at Cambridge. Following on from my PhD, I did my first postdoctoral research at Free University, Amsterdam and had my first child. I took a short break and then was successful in getting a part-time research position at the Open University. My advisor moved to another institute, which meant that there was a vacancy at the OU and I got the job.


SS: What, or who, inspired you to get a career in science?

PA: If I think about it then first point of inspiration came from my surrounding environment and friends in India. As a little kid I was wowed by functioning world around me. I asked a lot of questions (my mum says). What is going on inside living creatures including plants? What makes them grow and how? When and how did it all start? As a result: more I thought, more I asked and more I heard, more I was amazed!

Other than my own curiosity, I was lucky that my parents gave me the freedom to choose where and what to study – this may sound alien in the western world but there are many, especially girls, in this world who do not have choices. I will give you one example that springs to my mind. I took an exam to get a University place in India and my score gave me two choices: I could study botany, zoology and chemistry at the Women’s College or at the Faculty of Science I could study geology, geography and chemistry, with was considered a less prestigious combination of subjects but at a co-educational institutional (both men and women). My dad strongly encouraged me to go to the Faculty of Science and I chose that path. Though my favourite subject was originally chemistry, I fell in love with geology in my first two years and decided to pursue it for my final year. My decision was enthusiastically supported by my close friends and some professors, which gave me much needed encouragement as I was going to be the only girl in the year group studying geology. My parents were surprised but happy with my decision to pursue geology. My dad’s initial encouragement meant that I tried a new subject and made a career in it.


SS: What is the most fascinating aspect of your research/work?

PA: It is amazing that how much variety we have in everyday life at work. No two days or even two half’s of the day are same – thanks to emails. Every piece of research that we do throws so many unknowns and surprises – it is fascinating! I get to meet people and learn every day, opportunity to inspire and mentor next generation of scientists and pass on the knowledge I have through my experience or gather every day.

I was thrilled to find out last year that I will be working as part of the OU team of academic advisors with the BBC in the making of the “Blue Plant II”. This gave me the opportunity to share my research and knowledge about Oceans to wider public through this programme. Keep an eye for the amazing series of the “Blue Plant II” to be aired in autumn.


SS: What attracted you to Soapbox Science in the first place?

PA: Soapbox Science offers the opportunity to connect to the public to share our enthusiasm of science and hopefully inspire someone. We all are naturally a scientist but we do not realise it. Soapbox Science allows us to talk to people and make everyone realise their hidden interest in science. I want everyone to know how fascinating oceans are in that they are not only responsible for regulating our planet’s natural system but also responsible for every second breath we take. Isn’t this mind-blowing?

We scientists, have to remember to reach out to people and it reminds me of the quote from Winnie-the-Pooh (A.A. Milne): “You cannot stay in your corner of the Forest waiting for others to come to you. You have to go to them sometimes.” I suppose, through Soapbox science I will come out of my corner of the forest


SS: Sum up in one word your expectations for the day – excitement? Fear? Thrill? Anticipation?

PA: Fun!


SS: If you could change one thing about the scientific culture right now, what would it be?

PA: Freedom to innovate and discover rather than demand for publication numbers.


SS: What would be your top recommendation to a female PhD student considering pursuing a career in academia?

PA: Be passionate, work hard and persevere.

Posted in 2017 speakers blog | Leave a comment

Give yourself the chance and who knows where it might take you: Meet Stacy Phillips

Stacy Phillips (@shtacy_phillips) is a 1st year PhD student at The Open University, Milton Keynes. Stacy is a geologist and geochemist who is investigating granites in the Himalaya, trying to find out how these rocks formed and what that can tell us about how the Himalayan mountain chain came to be. This is a photo of her carrying out fieldwork in May 2017 in eastern Bhutan. Come along to her Soapbox Science talk in Milton Keynes on 29th July 2017 to find out “How to make a mountain”.





SS: Stacy, how did you get to your current position? 

SP: After doing my BSc. at the University of St Andrews I ended up on the other side of the Atlantic studying for my MSc. at Memorial University of Newfoundland, where I was looking at the formation of granites in the Mojave Desert, California. I returned to the UK and worked as a Data Analyst, monitoring petrol tanks for leaks, but the call to research was too strong to ignore and I applied for a fantastic project at The Open University, where I started in October 2016.


SS: What, or who, inspired you to get a career in science? 

SP: I’m a naturally curious person so I’ve always been attracted to science. Understanding the natural processes that shape our landscape initially drove me towards physical geography. I was then lucky enough to go to a college that taught A-Level Geology, and it was that course that got me hooked! And then it was during my undergraduate studies that I found out about all the weird and wonderful places you can travel being a geologist and I knew that it was the career for me.


SS: What is the most fascinating aspect of your research/work? 

SP: I find it incredible that I can take a fist-sized sample of rock, crush it down into fine pieces, extract tiny minerals that are smaller than a grain of sand, look at the chemistry of those minerals and be able to understand how an entire mountain belt forms. Being able to investigate processes across all of those scales is pretty mind-blowing really!


SS: What attracted you to Soapbox Science in the first place? 

SP: I love talking about my work, partly so I can drop into the conversation that I’ve been to the Himalaya! But mainly I enjoy the challenge of convincing people that rocks are cool an interesting! I want people to feel as passionately about geology as I do. I also think that geology can come across as a bit dry and unimportant to the general public. But in reality, if you can’t grow something you have to dig that material up out of the ground, so if we’re using the earth’s natural resources then rocks should be really important to the general public. And that is a point I hope I can get across from atop my soapbox.


SS: Sum up in one word your expectations for the day 

SP: Excitement (+ a tinge of fear!)


SS: If you could change one thing about the scientific culture right now, what would it be? 

SP: The prospect of having to work in a “Publish or Perish” culture where papers are the currency is really daunting. I know that in order to have a chance of getting a post-doc I’m going to need to have published by the time I finish my PhD. Although this would obviously be the goal anyway, the pressure is going to start very early on my career, and is only going to get worse as (or if!) I progress.


SS: What would be your top recommendation to a woman studying for a PhD and considering pursuing a career in academia or research? 

SP: I don’t have anything specific to women, as gender shouldn’t matter in academia (although unfortunately it often still does). But my advice to anyone pursuing research is to try for everything that you can, just give it a go! A funding proposal, a training opportunity, job applications, you just have to go for it. Even if you think you’re underqualified or you won’t get it, what is the harm in trying? You definitely won’t get it if you don’t try at all. I’ve had my fair share of rejections for jobs and positions already, but I kept going and eventually I ended up landing my dream project. Give yourself the chance and who knows where it might take you! The Himalayan mountains maybe?!

Posted in 2017 speakers blog | Leave a comment

Understanding chemistry and contaminated land: Meet Sabrina Cipullo

Sabrina Cipullo is a Marie Curie Early Stage Researcher in Environmental Science at Cranfield University. She has a Masters of Environmental Science and Biotechnology from the University of Milan, and a BSc in Biotechnology. Her PhD focuses on environmental chemistry and toxicological approaches to site assessments. Her research focuses on better understanding the sources of pollution and the environmental fate of complex chemical mixtures.  Meet Sabrina at Soapbox Science Milton Keynes on Sat 29th July, 12-3pm talking about soil science, contaminated land, and the Chuck Norris Effect.


Soil Science, Contaminated land – Detoxified!

What do you do with your plastic bottle or soda can when you’re finished with it? Do you throw it in the trash bin, recycle it, or simply drop it on the ground? Trash is one of many ways to pollute earth. Soil is contaminated when harmful, unwanted materials (pollutants) are added to it. Even if we cannot always see the pollution, it can have negative effects on living things and the environment. Did you know that soil contamination is one of the leading causes of water pollution around the world? Remediation can reduce contaminants to lower levels, and in particular, bioremediation uses microorganisms, fungi and plants to clean the environment. But, how do regulators (and scientists) assess the risk and establish “how clean” is clean” after remediation?

At Soapbox Science, I will be talking about the main contaminants affecting soil and how they behave in the environment. I will talk about methods for how to find, manage and clean soil contamination (but do not try this at home!) Secrets will be revealed, about how scientists study the effects of this contamination (toxicity) to protect both people and the environment. And of course, you’ll also find out how to prevent soil contamination and what you can do to make a difference.


My superheroes


I never imagined myself doing a PhD. I grew up in a family with two sisters and all of us were meant to take over our father’s building company once grown up. The Italian side of my family has its origins in the south of Italy, where traditionally the man (my grandfather) was the ruler of the family, while the female (my grandmother) took care of the day–to–day operations and mostly acted as child carer and housewife. My grandmother, for example, took her driving licence at the late age of 50, after my grandfather passed away. Before that, she was not expected to drive or have any need to leave the house. Fortunately that changed rapidly, in only one generation!

My mother had a regular job and always participated actively in every aspect of economic and social life. However it is true that there can still be a tendency to expect women to perform the majority of the domestic tasks they did in the past, in addition to new responsibilities. For this reason, I have always been inspired by these superheroes, who are intelligent and loving mothers, but also strong and motivated women. Somehow I knew one day I would be like my mother.

From when I was very young I was interested in art and science. I still remember at the age of 7 preparing chlorophyll extracts (a very secret recipe, which only my sister is aware of) and selling it to the neighbours for a few liras (former Italian currency) to make their plants grow healthier and stronger. For a long time I actually believed I was making the miracle happen. It was only later on that my father admitted he would secretly substitute my test-plant, overnight, with a much bigger one, so that the following day I believed the chlorophyll extract was working. To be honest I believed it, and it was probably the best self-confidence booster, and helped me build my motivation.

As a child, every day was a new discovery, and I became passionate about entomology (the study of insects) as well. For my 10th birthday I received a book about insect classification. Luckily, I lived in the countryside, and the fields were my lab. Me and my sister, Valentina, would spend endless days (and sometimes evenings), crawling around the fields in search of small insects, or jumping with our butterfly nets. I must say it was not always satisfying, and we often finished empty-handed, but it was worth the wait. When we finally caught something, we both screamed with joy, and of course fear!  The following day we would prepare and carefully pin the little insect’s legs, and add a tag with the information and name of the catcher. That was great fun!

I always felt the most boyish of the three sisters. Don’t get me wrong, I had my Barbie dolls and a pink bike, but I always enjoyed challenging myself, and of course, the boys, in both sports and science. I always had quite a strong personality and somehow it helped me to be respected. I never struggled or suffered in my childhood over gender differences. At school I was a good student (very talkative at times, some would say…) always fascinated and curious about everything new, especially in biology. I was unsure about what to choose for my undergraduate studies; it is difficult to make such important choices at a young age.

However, I now realise that in reality things can be flexible and scientific disciplines cross and interlace. Plants and the environment always fascinated me (and still do), so my undergraduate studies were focused on green biotechnology. Unfortunately at that time I was a little stubborn, and I wanted to work and study at the same time, so I couldn’t follow the regular lectures. I was pretty much on my own, since all the rest of my classmates had already made friends and study groups. Luckily I found a group of mechanical engineering students, always studying at the library until late, and we became a study group, but most importantly friends. Needless to say, the group was male dominated, with only two females. The competition amongst us was fierce, and even though we were all friends you could read between the lines that we (the girls) were  considered to be less capable. I really struggled to finish my course in the three prescribed years (due to the time I dedicated to work), and that really hurt my pride. I started asking myself if I was good enough, or whether there was someone still swapping the “small plant” with the “grown up plant” to make me believe that I could make it.

Luckily I always had very supportive parents, a stubborn mind, and thick skin. After a career break in Australia (where I worked as a waitress in two different places with a 20 hours/day shift), I thought about becoming an architect, but then went back to my roots and enrolled for a Masters in Environmental Biotech at the University of Milan. Once again the gender ratio was shockingly unbalanced (and not in my favour), but I found my way and graduated with the best grades and honours. This journey was short and intense, and my colleagues were always helpful and encouraging.  I shared the most interesting scientific (and non-scientific) conversations with them, and I made good friends for life.  I have to say I always felt treated well and respected by all my male colleagues. I would not have a career in science if it were not for them. My colleagues, and most importantly friends, have supported and encouraged me to complete my undergraduate study, do postgraduate study, and still support me every day during my PhD.

Finally, I would not be who I am if my mother had not been brave enough (and crazy enough!) to send me travelling around the world at a very young age. She also taught me a great deal about how to work towards my own goals. I am incredibly grateful for her support and encouragement. All this has helped me a lot during my PhD journey in which, like insect hunting, some days you end up empty handed, but on other days it is extremely rewarding. I like the challenges that come with the PhD and the excitement of doing new things, and constantly learning. There are many ups and downs, it feels a lot like an emotional roller coaster, but I am sure that one day I will look back and miss these moments.

I am very passionate about communicating my science and showcasing my work and I recently became a STEM ambassador to inspire and engage young people about science, technology, engineering and mathematics. I have been involved in outreach activities and have taken part in different events to help people better understand chemistry and contaminated land. I am really looking forward to participating in Soapbox Science!





Posted in 2017 speakers blog | Leave a comment

Ten things I wish people knew about autism : Meet Rachel Moseley

Dr Rachel Moseley is a lecturer at Bournemouth University, a researcher in cognitive neuroscience, and a keen advocate of public engagement in science. She feels passionately about working to improve understanding and compassion for people on the autism spectrum and those who live with mental health issues, and about embracing neurodiversity in all its forms. She will be taking part in Soapbox Science Milton Keynes on Saturday 29th July 2017.


Ten things I wish people knew about autism

By Dr Rachel Moseley

I’m counting down the days until the 29th of July… my day at Soapbox Science. I’m both terrified and exhilarated. I’m not completely new to Soapbox Science, having spoken last year in Bristol. I’m going to be talking a bit about the brain in general, but this year I also really want to take the opportunity to give a voice and dispel some myths that plague one group of vulnerable people in our society: people with autism spectrum conditions (ASC).  (Note: some people prefer identity-first language, i.e. ‘autistic person’. I use both interchangeably but respect the right of individuals to use the format they prefer).

Autism is a neurodevelopmental condition with strong genetic contributions, which means that an individual sets off down a different developmental trajectory from the start regarding brain development (Hazlett et al, 2017). It will always be a part of that person; even if their symptoms change with their ability to adapt, their autism is written into their biology. You might have heard of Asperger syndrome, which is just one form of autism. When people talk about Asperger syndrome they tend to mean autistic people whose IQ is in the average to high range, and this is the group that I particularly work with.

I’m a cognitive neuroscientist by trade, which means that I study the brain basis of thoughts, emotions and behaviour. My particular interest in this field is in how autistic and non-autistic people differ. I’ve been looking at various things, like how the brain works during language processing, thinking about others, daydreaming and performing visual-spatial tasks. I’ve also been branching into other areas of autism research, such as sex differences and mental health in autism.

Autistic people and their families suffer a lot of stigma from some of the misconceptions floating around about autism. I feel passionately about trying to help increase understanding and compassion for those on the spectrum, so here are ten things I wish people knew about autism. I hope you’ll enjoy learning more and that you’ll come chat to me on the 29th in Milton Keynes


1. Rain Man and Sheldon Cooper (Big Bang Theory) are just cardboard cut-outs.


Stereotypes are very useful things in a complex social world. They simplify basic facts about a group of people in a way that allows us to identify and group them easily. We all know, however, how damaging stereotypes can be in that they reduce a mass of individuals into a homogenous group who are defined by few simple, broadly generalized features that are used as ‘rules of thumb’ for identifying them and making judgements. That’s just so with Sheldon and Rain Man.  These guys are stereotypes which greatly simplify some basic facts about autism, for example the fact that autism is characterized by social difficulties and problems making relationships with others. Stereotypes are useful in some respects: they tap into a shared cultural idea of what autism is, and it’s helpful to bring everyone together to a common ground before trying to flesh out the reality of autism. The problems come when we start expecting to see Sheldon or Rain Man as soon as we know someone is autistic. Once we start looking at the real autism, throw away your stereotypes because autistic people are every bit as diverse as non-autistic people. Having autism is having a brain that works differently to those of non-autistic people – it’s a simple analogy, but a bit like different kind of operating system, like Windows to Macs. However, people with autism are exactly that – people, foremost, with autism just one element of who they are. Who they are as people you have to find out with respect and compassion.


2. ‘Unempathetic’ doesn’t mean cold and uncaring


A lot of people believe that autistic people don’t have any empathy. It’s well documented that where non-autistic children are disturbed or upset by an adult’s pain and seek to comfort them, children with autism are less likely to respond and may continue playing with no concern. Likewise, autistic people may sometimes say things that come across as rude or harsh or insensitive and may not take the hint when someone gets upset. This apparent lack of concern for others has been interpreted as a lack of the ability to emphasise with them; to feel what they are feeling, to care. But this idea doesn’t sit well with new scientific evidence. One study found autistic children actually showed a heightened stress response to images of people in distress and some had to cover their eyes (Blair, 1999). Reports from people on the spectrum and practioners who work closely with them reveal that indeed, autistic people are often painfully upset by the problems of others (Smith, 2009). And as scientists now believe that emotions and empathy are necessary to develop a sense of morality (Prinz, 2006; Aaltola, 2013), how can we explain the fact that people with autism often have more keenly and strongly-held senses of morality if they lack these prerequisites? (De Vignemont et al, 2008). Perhaps it is our idea of ‘empathy’ that needs to be reconsidered: we need a model which recognizes that people may struggle to recognize the feelings of others but are capable of caring about them when they do (Baron-Cohem, 2009; Uzefovsky et al, 2015). When emotional information is explicitly presented to autistic people so that they don’t have to guess what the other person is feeling and why, they’re just as concerned and emotionally-affected as non-autistic people (Jones et al, 2010).


3. People with autism have emotions.


This one seems so basic that I hate to write it, but sadly it’s quite a common myth. It might stem from the fact that it’s sometimes quite hard to identify what people with autism are feeling. Some autistic people show very little change in emotional expression. Others have a normal amount of emotional expression in their face but the quality of it is odd, not the kind of expression you might expect for an emotion like ‘sad’ or ‘happy’ (McDonald et al, 1989; Moody et al, 2007). So not only is it hard for autistic people to recognize what others are feeling, but it’s also hard for non-autistic people to recognize what autistic people are feeling! It’s also extremely common for people with autism to experience alexithymia, a difficulty identifying and understanding how they feel (Bird and Cook, 2013). With alexithymia, one might feel the physiological ‘symptoms’ of fear – for example, sweating, heart pounding, nausea – but can’t put the emotional label on it. Therefore sometimes people with autism can’t express their emotions on their faces or in words. As you can imagine, this can be extremely difficult. Autistic people often struggle to express extreme emotions (Samson et al, 2012). This can result in what is known as a ‘shut down’ (sort of blocking everything out, literally shutting down: for example, clamping one’s hands over one’s ears, curling up, squeezing eyes shut and not responding) or, alternatively, in a ‘melt down’ (emotions exploding outwards in tears, shouting or screaming). Autistic people are sometimes aware what’s happening during a shut down or melt down, but not always. It can be an awful experience which is difficult to recover from.


4. People with autism aren’t loners who don’t want friends.


You definitely get a Sheldon vibe here, don’t you? But this stereotype belies the truth of what I mentioned above… that people with autism are every bit as diverse as non-autistic people, that autism is a part of who they are but only one part of their personality. Two psychologists in the 1970s found that there were huge differences in the sociability of autistic children. Wing and Gould (1979) found some children with severe intellectual disability who were pretty sociable and some who were not. In children without intellectual disability (who would therefore be classified as ‘high-functioning autistic’ or ‘Asperger syndrome’), they noticed that some children were ‘aloof’: they were pretty indifferent to the presence of others, especially other kids, and just approached others to get physical needs gratified. Others were ‘passive’: children who didn’t initiate social contact but were fine with other people approaching them and who were often brought into other childrens’ games. The last group, perhaps the saddest in a way, were ‘active but odd’: this was the group who really wanted social interaction and so constantly approached others with no idea how to interact with them. Their interactions were inappropriate because they were unaware of the feelings and interests of their interaction partner; they didn’t adapt their approach to the context or the identify of the other person and would often go on and on about their own interests. Autistic adults show similar diversity, and some are actually incredible social chameleons who figure out rules for how to interact with people in a positive way – they can be the life and soul of the party and may have an excellent sense of humour. Others are less able to modify their behavior so might still remain off-putting to others. This is extremely sad, because studies show that many autistic people are desperately lonely and would love to have friends (Bauminger and Kasari, 2000; Mazurek, 2014).


5. Autistic people are not all geniuses and they don’t all have special abilities.


It’s kind of a shame this one isn’t true, because who wouldn’t like to have an awesome party trick? It’s commonly assumed that autistic people will be geniuses in a particular field or have exceptional, extraordinary powers in art, music, memory, or so forth. Some do, certainly. There is a phenomenon called ‘savant syndrome’ which describes having an exceptional talent in the presence of a low IQ (Treffert, 2012). Rain Man is actually based on the real life case of a man with an encyclopedic memory of geography, music, literature, history, sports and other areas he’d read about (Peek and Hanson, 2008). This individual had memorized over 6000 books and had the incredibly useful ability to scan one page with one eye, the other page with the other – incredible! There’s some idea that perhaps 1 in 10 autistic people show some degree of savant skill (Treffert, 2012) – so still, even if it’s more common than in non-autistic people, it’s a very small minority. Likewise, autistic people exist who do have exceptional intelligence and prowess in a particular field (Fitzgerald, 2002; Boso et al, 2010). In many ways, the features of autism lend themselves to art, science, music or maths: specifically, the archetypal intense focus that people with autism show to their particular interests. This is known as ‘repetitive and restricted interests’ among scientists and clinicians, and describes the fact that people with autism will tend to get extremely interested, to an atypical degree, in particular subjects or objects. They then find it very easy to focus and involve themselves in that thing to the exclusion of all else. In many ways, research is the perfect environment for an autistic person! Ultimately, though, intelligence varies in autistic people just as it does in people without autism.


6. Girls and women can have autism too… but it looks very different.


For many years, autism was believed to be restricted to males only; it’s only recently that research attention has focused on autistic girls and women, and uncovered a whole population who’ve been suffering in silence. Problematically, it’s much harder for young girls to be diagnosed with autism (Lai et al, 2015): they need to have substantially more severe symptoms, and they tend to be diagnosed much later. In part this may be because gender stereotypes cast socially-impaired girls as ‘shy’ and socially-impaired boys as ‘unresponsive’ (Goldman, 2013). It can also be because autistic little girls are less likely to show disruptive behaviour. Whilst they have the typical autistic ‘restricted interests’, they tend to have special interests that are less eccentric and actually appropriate for their age and gender (for example, animals, boybands, soaps on TV). They are often exceptionally good mimics and do a great job of learning how to manage social interaction with studied strategies – underneath, though, they’re often highly anxious and have the same core problems with social understanding (Gould and Ashton-Smith, 2011). Quite often, autistic girls and women come to the attention of professionals when they come along with comorbid mental health problems, which are very common – depression, anxiety, OCD, eating disorders, substance abuse, personality disorders… it’s very common for autistic women (and indeed, higher-functioning autistic men) to accrue an impressive list of diagnoses before they’re finally identified as autistic. Unfortunately, professionals are just unaware of how differently autism presents in females, and it’s desperately important that we learn more about autistic girls and women, what they’re like and how to recognise them so that they get the support they need. This is one area in which my research focuses.


7. Autistic children become autistic adults.


This sounds really silly, but somehow, policy-makers and professionals seem to forget that autism is a neurodevelopmental condition which does not go away. Support services for autistic individuals dramatically drop off when they turn 18 (Gernhardt and Lainer, 2011), leaving them and their families in limbo without appropriate social or medical support. This group have a higher than normal rate of mental illnesses, yet we know very little about appropriate psychological treatments to help them (Bishop-Fitzpatrick et al, 2014). The National Autistic Society reported that in 2016, only 16% of autistic adults were in full-time paid employment, though 32% were in some kind of paid work. In 2012, only 10% of autistic adults were receiving any kind of support to find employment! Many autistic adults end up extremely isolated, with few or no friends, and many remain with their parents or families, unable to live independently. About 1.1% of the English population have an autism spectrum condition (Brugha et al, 2012: study funded by the Department of Health). This means that over 695,000 people will grow up with uncertain likelihood of receiving the support that would allow them to lead happy and fulfilled lives.


8. Parents: autism isn’t something you did wrong.


There have been some awful ideas about the cause of autism. The worst, in my view, was from Bruno Bettleheim, who published a book called ‘The Empty Fortress’ in 1967. In it, he suggested that autism was caused by cold and rejecting parenting, particularly from mothers. Tragically, so many parents suffered under this mantle of blame for a long time. We now know that autism has an extremely strong genetic basis. Literally hundreds of genetic mutations have been linked to increased risk of autism (De Rubeis et al, 2014), and these genes all do slightly different things; some of them affect the most basic way that brain cells function. Nonetheless, these studies show how difficult it is to pinpoint a genetic cause for autism: they show that there are many routes to the person’s end state as ‘autistic’, which may explain the huge diversity of autism. Autism is a condition rooted in biology and the brain – not in bad parenting. I want to mention, here, the recent emergence of anxiety about vaccinations and autism. This rumour causes untold damage not only to children who contract easily preventable diseases, but also to families with autistic children. Meta-analyses (e.g. Taylor et al, 2014) and autism experts have thoroughly debunked the original article linking autism and vaccinations – it was actually withdrawn due to the poor, inaccurate science that led to these claims. Let’s hope that this incredibly destructive myth is put to ground as fast as possible.



9. People with autism aren’t “making a fuss” or “making things up” 


This one is really important. The brain seems to develop differently from the very beginning of life in autistic individuals (Hazlett et al, 2017). This isn’t a bad thing – remember the analogy above about different operating systems? – but since all of our behaviour, thoughts and emotions originate in the brain, we can expect autistic people to differ from non-autistic people. For example, it’s quite common for people with autism to be under-responsive to some sensations whereas others can be painfully heightened; a whisper can come across as a shout, unimportant sounds like the ticking of the clock can be impossible to block out whilst trying to attend to a lesson. Green et al (2013) exposed autistic and non-autistic teenagers to mildly aversive stimuli (a spinning colour wheel, increasingly loud white noise) whilst scanning their brains. Interestingly, the sensory parts of autistic teenagers’ brains showed increased activity to sensory stimulation, and this was related to their levels of anxiety and distressing sensory symptoms. What’s more, parts of the brain related to emotion and memory – the amygdala, the hippocampus and the prefrontal cortex – were also more active in the autistic teenagers. Some scientists suggest that the amygdala is like the brain’s early warning system; it detects threat in the environment, and makes sure that we remember it for future occasions. This implies that autistic individuals experienced these sensations as much more aversive and upsetting than non-autistic people. Social difficulties, difficulties with planning and decision-making, and other autistic symptomatology are linked with differences in brain connectivity and structure (Ameis and Catani, 2015;  Keown et al, 2013; Hazlett et al, 2017) – mental health conditions like anxiety and depression, which are common in autism, are also rooted in differences in the chemicals and activity of the brain. For this reason, it’s so important to recognise that no one wants a mental illness and people who have one aren’t ‘giving in’ or being weak… mental illnesses are illnesses of the brain in the same way as tuberculosis is an illness of the lungs.


10. Autism isn’t necessarily something we should strive to eradicate.


Many people see autism as a disease to be cured. There are people who are so debilitated by their autistic symptoms that they would welcome the existence of a cure. There are families who find it exceptionally difficult to live with the challenges of autism. I believe that so long as a perspective does not harm others it must be given full credence, weight and respect, and the experiences of people with this perspective are valid and must be heard and held compassionately. I suppose what I have become very aware of, in my time researching in this field, is that this narrative is not the *only* one out there.  Another perspective focuses on autistic people having brains that work differently from most people; brains that are different from the statistical average (literally, being in the minority). Asperger himself, who identified this syndrome, wrote: “Not everything that steps out of line, and thus ‘abnormal’, must necessarily be ‘inferior’”. This approach, in my view, recognizes the many strengths of autistic people and the contributions they can make to society, if supported to do so. Let’s think, for example, of the autistic eye for detail and single-minded focus. There’s been some speculation that Einstein had autism; although we can’t verify this, studies have shown that having a greater number of autistic traits is indeed linked with careers in science, technology, engineering and mathematics (Ruzich et al, 2015), and that students with autism are disproportionately likely to end up in these fields (Wei et al, 2013). For many autistic people, it would be impossible to extract their ‘autisticness’ without losing part of who they are: their kindness, their quirkiness, their honesty, and so forth; many lovely people would cease to exist. “Neurodiversity” is a frequently-touted word on the internet which, in my understanding, encapsulates this spirit of embracing, respecting, even celebrating the variety of human brain architecture which cause differences in thought, emotion and behaviour. This is not to undermine the real difficulties that autistic people experience living in a non-autistic world. I think this approach is *not* incompatible with research attempting to respectfully understand these differences and offer ways to alleviate the difficulties that can arise through problematic symptoms, helping the person to exist happily as they are, with their autism, rather than take it away (if such a thing was possible).


I feel that it’s really important that this second narrative is heard and respected just as much as the first. It’s important for the self-respect, self-esteem and dignity of autistic people. It’s important for non-autistic people, too, who may otherwise be blind to the many exceptional qualities and skills of people on the spectrum. Professor Tony Attwood, a renowned expert in Asperger Syndrome, called autistic people “bright threads in the tapestry of life”. If we ‘cured’ autism, how much we might be missing out on? Moreover, in a more inclusive society with greater support for autistic people as they grow into adulthood, who knows what we could stand to gain?






Thank you so much for reading this piece. Please come down and chat to me at Milton Keynes on the 29th of July, where I’d love to talk to you about autism and about the brain. 


Posted in 2017 speakers blog | Leave a comment

Be kind to yourself: Meet Kirsty Lowe-Brown

Kirsty Lowe-Brown is a PhD student and the Psychology Technician and Demonstrator at the University of Buckingham. Her research is on children’s understanding of the expression and regulation of emotions.  She is taking part in Soapbox Science Milton Keynes on Saturday 29th July 2017.





SS: Kirsty, how did you get to your current position?

KLB: Initially it was a bit of battle between my two loves of art and science. After I originally applied to study art at university, I then had a change of heart and science won out and I ended up doing a BSc in Psychology at the University of Buckingham. I loved my undergraduate experience and left Buckingham with the intention of applying for Postgraduate courses in Educational Psychology. I sought to gain some experience working with children and so I worked in a primary school and helped run a children’s play scheme organized by an Autism charity. I learnt about the vacancy for my current position at the University of Buckingham and so I decided to follow a research doctoral path instead; but still focusing on my interest in children’s development.


SS: What, or who, inspired you to get a career in science?

KLB: I have loved science as long as I can remember; I think I was a very questioning (annoying) child, always asking “why?” and “how?” My father had a career as an environmental scientist and I’m sure he encouraged my scientific interests. I always thought it was very cool telling my friends my Dad was a scientist, although to be honest, I never really understood what it was that he did.

I became interested in developmental psychology through watching the BBC television series ‘a child of our time’.  The series (still ongoing), follows the development of 25 children, born in 2000. The program is presented by Professor Robert Winston, who has, arguably the best moustache in science.


SS: What is the most fascinating aspect of your research?

KLB: Well certainly the thing I enjoy most about research with children is you can never predict what they will come out with. I used interviews in my research studies, which meant I had to spend extensive periods of time sat transcribing my data. If it wasn’t for the often hilarious and very imaginative responses of the children, I’m sure I would’ve gone mad.

The best thing about studying emotions is that they impact all of human experience; this makes affective science (science relating to moods, feelings, and attitudes) a really diverse area for research as you can look at the role of emotions in so many ways.


SS: What attracted you to Soapbox Science in the first place?

KLB: I attended the Milton Keynes event in 2016, when a colleague was a speaker. She was amazing and I thought it was such a fantastic way of engaging the public in scientific research and promoting girl power (I grew up in the 90s, so the spice girls were my heroes).


SS: Sum up in one word your expectations for the day – excitement? fear? thrill? anticipation?

KLB: Nervous. However, as I’m a very anxious person (and as such nervous anticipation is my default state) I try to tell myself that my nervous feelings are really just excitement. This is a strategy called anxiety reappraisal; fingers crossed it will work on the day!


SS: If you could change one thing about the scientific culture right now, what would it be?

KLB: I wish there was less academic snobbery in scientific research. Often at conferences you will hear academics talking down to presenters about their research. I think ultimately everyone is working towards the goal of furthering knowledge and understanding; so the culture should be supportive and focused on encouraging research within each scientific field.


SS: What would be your top recommendation to a female PhD student considering pursuing a career in academia?

Be kind to yourself and try not to compare yourself to others. I think academia inevitably involves a lot of juggling and it can be hard to find the right balance between teaching, research and your home life. I often feel when spending time on one thing that I am neglecting the other aspects, but I think most academics would tell you the same.

Posted in 2017 speakers blog | Leave a comment

Thrown yourself outside of your comfort zone: Meet Emily Dowdeswell

Emily Dowdeswell is a PhD student at Cranfield University, researching the effects of climate change on soil erosion. Her research investigates the impacts of predicted climate change regimes on soil microbiology and how vulnerable soil is to erosion. She will be talking about soil erosion and climate change at Milton Keynes Soapbox Science on 29 July 2017.




SS: Emily, how did you get to your current position?

ED: I first studied BSc Geography at the University of Leicester, after which I moved on to a Masters by Research at the University of Bedfordshire. My year completing a Research Masters degree introduced me to the ups and downs of research in science and was an excellent learning curve. After this, in October 2016, I began my current position as a PhD student at Cranfield University. To get this far I have had to work hard, but more importantly I have had to seize the opportunities that have come to me and persevere when times get frustrating.


SS: What, or who, inspired you to get a career in science?

ED: My family are keen gardeners and when I was younger we often went out on walks where they would point out the wildlife to me as we went. From this I think they taught me to be curious about the natural world around me. They encouraged me to ask questions and when they didn’t know the answers to then go and find out. They still inspire me today, when I’m struggling with an idea I always talk to them and they often help clear my thinking and send me to back to my research with more enthusiasm.


SS: What is the most fascinating aspect of your research/work?

ED: I am working on untangling the complex physical, chemical and biological mechanisms in soil using controlled laboratory experiments. I find it fascinating that neatly designed experiments can reveal so much about our environment and help us move a step in the right direction to solving challenging questions.


SS: What attracted you to Soapbox Science in the first place?

ED: In Soapbox Science, it is great to see the breadth of science out there and the cutting-edge questions people are working to answer. I am also proud that the event champions women and highlights different careers.


SS: Sum up in one word your expectations for the day

ED: Fun!


SS: If you could change one thing about the scientific culture right now, what would it be?

ED: Sometimes there is the idea that you should be constantly working on your research and that if you don’t you will fall behind and not be good enough. This idea is extremely damaging for scientists, as it feels like your research is all-consuming and if you’re not working then you should feel guilty. This idea might also put others off a career in science where they think that a good balance between your personal and work life isn’t possible. I’m working on getting the right balance for me and I have found that keeping my evenings and weekends for the other parts of my life helps give me perspective, so when I return to work on Monday morning I don’t feel burnt out. I think that it’s great if your research is your passion, but it shouldn’t have to be the only thing you enjoy doing.


SS: What would be your top recommendation to a woman studying for a PhD and considering pursuing a career in academia or research?

ED: In any career, I think it’s important to decide what compromises you are willing to make, whether it’s the location, type of work or your expected hours. With this in mind, if an interesting opportunity comes your way then have a go – even if they seem daunting and mean you have to push yourself! The biggest lessons I have learnt so far are from when I’ve thrown myself outside of my comfort zone and it’s a great confidence builder!

Posted in 2017 speakers blog | Leave a comment

Putting your enthusiasm to work: Meet Dani J. Barrington 

Dr Dani J Barrington is a Research Fellow in Water Engineering for Developing Countries at Cranfield University. She studied at The University of Western Australia and holds a Bachelor of Engineering with Honours (majoring in Environmental Engineering), a Bachelor of Science (Majoring in Chemistry and Environmental Chemistry) and a PhD in Environmental Systems Engineering. She will be speaking at the 2017 Milton Keynes Soapbox Science event about her research on water, sanitation and hygiene in developing countries.



Putting your enthusiasm to work

by Dr Dani J. Barrington


My job revolves around getting to talk, think and write about poo.


Obviously this is not what I imagined myself doing when I was a kid. I grew up next to the ocean, so “saving the whales” was high up on the agenda of what I wanted to do with my life (I even learned Japanese in high school in the hope that I would one day get to ride on a Greenpeace anti-whaling ship yelling “not in the name of science!”). I was always one of the loud kids, and known to become passionate about anything I could sink my teeth into. I was particularly good at science and maths, so I assumed that I would end up studying for a profession in that field.


At university I first studied a double degree in Environmental Engineering and Environmental Chemistry. It was there that I realised just how important the interactions between people, engineering and the environment really are. I was a founding member of The University of Western Australia Pantomime Society, so I spent the five years of my undergraduate degrees making a fool of myself on stage, being part of a team and learning to be a leader as President and Producer of several shows. Between my degrees and pantomime, I decided that what I really wanted was to be an engineer that focused on people. What reason could there possibly be for engineering if it weren’t for people? I could do the technical calculations, but what I was really interested in was how engineering designs could have a positive influence in the world. I wanted to work in improving water, sanitation and hygiene (WASH) for the health of people and our environment.


My PhD investigated wastewater treatment in rural Australian towns, and whilst refining my research and writing skills at the university, I volunteered with the Western Australian Chapter of Engineers Without Borders Australia, eventually becoming President. This culminated in a secondment to Nepal for almost a year, where I worked with remote communities to develop water safety plans for their newly built water systems and toilets. This is when I truly recognised the importance of both technical and social skills in improving the WASH situation.


A wonderful moment in my career came when I realised that my interests and ambitions meant I was unlikely to develop some crazy advanced water treatment technology, and be a Nobel-Prize winning mad-scientist. Instead I was a good engineer with other skills which I’d previously discounted as “just a bit of fun” – I was naturally enthusiastic, had high emotional intelligence, and actually enjoyed public speaking and meeting new people. All of these could be combined to help me make a useful contribution in the field of WASH!


So on returning to Australia, PhD certificate and overseas work experience in hand, I threw myself into job-hunting and grant writing where I felt I could be the best version of myself – at the intersection of WASH technologies, people and the environment. So far this has seen me working in Fiji, Papua New Guinea, Solomon Islands, Vanuatu, India, China, Uganda, Indonesia and the Republic of South Africa. The best part of traveling for work is all of the awesome people I get to meet, both in communities and in various institutions. In September I will begin a new role as a Lecturer in Water, Sanitation and Health at The University of Leeds. I can’t wait to start the next phase of my adventure!


My advice to young women and men is that if you’re unsure what it is you want to do with your life, don’t let yourself get trapped in the idea that you have to know when you’re a teenager. The “grown-ups” may put pressure on us to ace exams and choose our university courses wisely, but we really never know where our own skills and passions will take us. Our skills are not just those that are written on a piece of paper handed to us whilst wearing a Harry Potter-style graduation gown. Our career path is our choice, and we can combine different qualifications and interests to devise the path we think is best for us, even if that turns out with us being referred to as “The Poo Water Lady” at family gatherings.

Posted in 2017 speakers blog | Leave a comment

Food spoilage or not, that is the question: Meet Carol Verheecke-Vaessen

Dr Carol Verheecke-Vaessen (CVV) is currently a Research Fellow at Cranfield University. Her research investigates the contamination of cereals by fungi able to produce toxins that pose a threat to human health. Here, she tells Soapbox Science (SS) about her interest in preventing those toxins from occurring in the food industry, how she wants to communicate her knowledge to the public and how she wants to encourage the next generation to become scientists. Carol will be standing on her soapbox on Saturday the 29th in MK:Center – come and meet her there! You can also follow her on Twitter: @CaVaessenVe

Food spoilage or not, that is the question

SS: Carol, welcome to Soapbox Science Milton Keynes! It’s great to have you on board. As is now traditional, we’d like to know a bit more about you – starting with your career path. How did you end up as a Research Fellow atCranfield University? 

CVV: As a Biological Science student, I had a part-time job in a company specializing in Decision Support Systems to better manage “Mycotoxins” risks. Mycotoxins are toxins produced on food by various fungal genera. The discovery of this food safety issue led to my graduation as an MSc in Food Quality and Safety. I followed that path focusing on aflatoxins, the most potent mycotoxins known, during my PhD in Applied Mycology and my temporary teaching assistant position at The National School of Agronomy in Toulouse (ENSAT – France). Nowadays as a Research Fellow in the Applied Mycology group at Cranfield University, I focus on other mycotoxins called T-2 and HT-2 which are regularly found in oats and there are concerns their abundance may increase with climate change.


SS: What, or who, inspired you to get a career in science?

CVV: When I was a child, I always told my mother I wanted to become a naturist (laughs)! Of course, back then, I didn’t know how to describe someone studying and understanding natural mechanisms. Much later, in high school, I got interested in biological science and most particularly into the examples on how our understanding of biological processes could help us to provide food and safety to everyone in the world. Since then, I have discovered how mycotoxins could increase the food insecurity of millions of Africans. Since then, I have been working on finding solution to mitigate mycotoxin occurrences.


SS: What is the most fascinating aspect of your research/work?

CVV: The potential to understand the many mechanisms within a microscopic organism. That we can understand what is happening within a 2 μm cell (1 μm is 1,000,000x less than a meter)! Thanks to special fluorescent microscopes, molecular biology (DNA, RNA) and analytical chemistry (ie. which compounds are in my sample), I can understand which conditions lead to the fungi producing toxins. This understanding is then key for designing prevention tools.


SS: What attracted you to Soapbox Science in the first place?

CVV: Too often a gap is felt between scientists and the public. How many times I have seen people’s behaviour changing when I told then I had a PhD? This change is often due to a lack of communication between scientists and the layperson. Yes we are scientists, but we are also humans with our thoughts, our dreams, our family and our friends. Events like Soapbox Science are extremely important because they can give another face to scientists. Meeting together is a way to remove this gap and to show to the public that scientist are humans like others trying to make our everyday life easier for the great of good.


Q: Sum up in one word your expectations for the day

CVV: Sharing


Q: If you could change one thing about the scientific culture right now, what would it be?

CVV: I would like to improve how we communicate with the rest of the world. As a young researcher, I need to improve my communication skills to be sure that what we do can be transmitted to everyone and our publications don’t end up being read only by other scientists. I hope that an event like Soapbox Science can enhance the people’s will to have a closer look at what we do.


Q: What would be your top recommendation to a woman studying for a PhD and considering pursuing a career in academia or research?

CVV: As an early scientist, the only recommendation I would suggest would be to try to find a good work-life balance as early as possible. Working as a scientist can be time consuming and can be stressful. Finding a good balance is a key to prevent you from being eaten by your work.


Posted in 2017 speakers blog | Leave a comment